microbric

www.microbric.com

rrrrrr
00000000000

Index

1. Getting Started

1.1 How this manual works
1.2 Breaking out your pieces

2. The Components
2.1 The Motherboard
2.2 The Modules
2.3 The Microbric 'Brics'
2.4 Connecting the Batteries
2.5 Joining Modules to your Motherboard using the Brics

3. Programming the Microcontroller on your Motherboard
3.1 Installing the software
3.2 Making a LED flash
3.3 Adding a slide switch
3.4 Adding a buzzer
3.5 The push button
3.6 The motor forwards/backward
3.7 Using bump sensors
3.8 The infrared receiver

4. Building your Bump Robot
4.1 What will it do?
4.2 Putting it together
4.3 Downloading the program to drive your bump robot
44 The code

5. Building your Remote Control Robot
5.1 What will it do?
5.2 Putting it together
5.3 Preparing the Remote Control
5.4 Downloading the program
55 The code

6. What Now?
6.1 Cleaning up the edges
6.2 Variations
6.3 Goonline

1. Getting Started

Finally! An electronics set that is really easy to build without sacrificing functionality!
Welcome to Microbric, the first solderless construction set made for electronics
enthusiasts.

1.1 How this manual works

This manual will take you through the various components that you have received in your
kit and how to join them together. It will describe how to use your computer to program
the individual parts of your project. You will then be shown how to put a basic Bump
Robot together, and how to download a program to drive it and, finally, you will see a
diagram of a completed Infrared controlled robot for you to build, and download the code
to drive it. In addition, you can go online to view Frequently Asked Questions, New
Possibilities for construction and New Code for programming as well as finding out the
latest news in Microbric electronics.

If you follow the manual through from start to finish, you will learn everything you need to
know to create the robots we have given you, as well as the knowledge and skills needed
to build and program unique robots of your own. Additional information about
programming your robots is included in the Basic Micro IDE help menu.

1.2 Breaking out your pieces
Your kit comes with a range of pieces,
shown below.

A number of your pieces will have arrived
within PCBs (printed circuit boards). You
need to remove these pieces before you
can start building your robot. Most pieces
can be pushed out with your thumbs, but if
you are having difficulties, use the end of
your screwdriver to gently lever them out.

2. The Component

2.1 The Motherboard

The Motherboard contains the 'brains' of your robot. On
it you will find the Microcontroller chip, the serial
connector (9 pin female D connector) for
programming your microcontroller, >
an on/off slide switch, Pins (edge contacts), ¥%
a Power LED, and a variety of components
and integrated circuits needed to connect

the circuits electronically and mechanically.

ﬁ On/off slide switch

Serial connector

Microcontroller

Power LED

2.2 The Modules

Along with your motherboard you have received a range of little circuit boards that hold
electromechanical devices. Each of these has a different function and when joined to the
motherboard at the pins, you can program them to perform their functions.

The modules consist of:

This module contains an LED (light emitting diode) and the

LED module circuitry to drive it. A LED is a tiny light, used, amongst other
things, to show that an electronic device is turned on.

Slide Switch Thls mo_dule contains a small switch and_ the c_|rCU|try to drive

module it. A switch allows us to turn an electronic device on, or

‘switch' between two electronic functions.

This module contains a Buzzer and the circuitry to drive it.
The buzzer is able to make sounds and even play simple
tunes.

Buzzer module

This module contains a small push Button and the circuitry to

Button module drive it. It can be used to start or stop an electronic function.

This module contains a small Motor and the circuitry to drive
it. The motor can be used to drive wheels forwards and
backwards.

Motor module

This module contains a Bump Sensor and the circuitry to

Bump Sensor drive it. A bump sensor can detect when it touches

module something, such as bumping into an object.
Infrared This module contains an Infrared Receiver and the circuitry to
Receiver drive it. An infrared receiver can pick up a signal sent using

module

infrared light from a remote control device.

2. The Component

2.3 The Microbric 'Brics'

Microbric 'Brics' are tiny building blocks which can be used to hold the motherboard and
modules together. These tiny black pieces fit into holes along the edge of the
motherboard and the modules (and other parts) and, when screws are added, complete
the circuit. You will need to assemble your Brics before you can use them. To do this, fit 3
of the tiny nuts into each bric.

! b

You can then use the Brics to attach the various modules (and other pieces) to the
motherboard. When connecting modules to the motherboard you need to make sure of a
few things:

1. Make sure that the little red dot on the edge of
the module lines up exactly with the little red
dots on the edge of the Motherboard
(at the pins).

2. Make sure that you use all 3 screws
and do them up firmly (but not too tight).

3. Make sure that the Bric is the right way around.
It will only fit one way you do not need to force
pieces together!

2.4 Connecting the Batteries

The motherboard is powered by batteries. You have been provided with four counter
sunk screws that are different to all of the others (they have a flat, instead of a rounded,
head), and 4 nuts. Use these to attach the holder to the underside of the motherboard,
making sure that the gold battery contact pads are aligned with the slots in the blue
battery mounts and the wires from the battery holders. (See the diagram below). The kit
requires 6 AAA batteries. Put these in before flicking the switch to power up your
motherboard. Once it is turned on, check that the tiny red power LED is lit up this will
indicate that you have put it together correctly. If it doesn't light up, check that your
batteries are all in the right way and that they are pushed in firmly before rechecking your
assembly.

2. The Component

2.5 Joining Modules to your Motherboard using the Brics
The modules are joined to the motherboard using Brics. You connect each module at a
pin. The pins are written around the outside edge of the motherboard as PO, P1, P2 etc.

Let's try connecting a module:

You can then use the Brics to attach the various modules (and other pieces) to the
motherboard. When connecting modules to the motherboard you need to make sure of a
few things:
1. Find a LED module, from your module collection.
2. Line up the red dot on your LED module with the red dot on the Motherboard at
PO (Pin 0).
3. Now fit a Microbric into the holes on the edge of your LED module
NOTE: The tiny pins on the Bric fit into the holes if you put the Bric in the
wrong way, the bric will sit crooked, i.e.

However, if you turn it up the other way it will sit straight. i.e.

4. Fit the Bric into the holes at PO on the motherboard.
5. Now screw in three screws firmly to complete the connection.

If you've done it correctly, your Module and Motherboard should look like this:

3. Programming the Microcontroller on your Motherboard

Your motherboard has a microcontroller that can hold a range of instructions to drive
various electronic components. The sets of instructions are called programs and writing
the instructions is called programming.

3.1 Installing the software

Programming computers or microcontrollers is done using programming languages.
Computers which are electronic can only understand the simplest of languages which is
written in binary, that is Os and 1s (or an electrical ON or OFF). As you can imagine,
programming a computer entirely in Os and 1s would be very, very slow and tedious. So,
higher level programming languages have been developed to make this easier. There are
hundreds of languages available, however our Microcontroller uses a special
programming language which has been written for it based on the BASIC programming
language. BASIC is easy to learn and remember.

To write programs, and to get the Microcontroller to read them, you need to install a
program which is provided on the CD-ROM called BMAtom.exe. You need to install
this before we can do any programming to tell your motherboard, or robot what to
do. To do this, double click on BMAtom.exe to run the set-up. Make sure the
program installs into the folder C:\Program Files\Basic Micro ATOM IDE 2.2. It will
ask you to restart you computer. Do so.

3.2 Making a LED flash

Now let's write our first program and then download it to your microcontroller.
1. Earlier we connected a LED module to pin 0 (PO) of the motherboard. If you
haven't done this step, go to 2.5 Joining Modules to your Motherboard using
Microbrics and follow the instructions there.

2. Open Basic Micro ATOM IDE 2.2.

3. Start a new program by going to File > New and choose an MBasic File. Give
the file the name LEDprogram.bas

4. A good thing to do before writing code for a program is to draw a flow chart of
how the program will work. Here is an example of a flow chart that shows what

our program will do:

Turn on LED

v

Keep on for
200
milliseconds

Turn off LED

Keep off for
200
milliseconds

]

3. Programming the Microcontroller on your Motherboard

5. Write the following program into the text window.
NOTE: It is important to type in exactly what is shown, because programming
languages use very specific code called syntax. If the syntax is incorrect, the
software, and later the hardware which is getting an interpreted version in
binary, will not be able to read it. Note that the tab indents are to make it easier
to reader. Writing after a semicolon are comments and don't affect the compiling
or how the program operates.

Main

high PO ;make the output at pin 0 high (i.e. 5V)

pause 200 ;hold it (at high) for 200 milliseconds

low PO ;make the output at pin 0 low (i.e. 0V)

pause 200 ;hold it (at low) for 200 milliseconds

goto Main ;go back to Main at the top, this makes the program loop
End

Some things to note about the program above:

* Notice that we have used the Tab key on the keyboard to indent parts of the
program. This isn't necessary, but makes it easier to read.

* Notice that the parts in grey after the semi-colons are descriptions of what the
program is doing. These also aren't necessary, but help you to understand
what your program is doing, and to remember what it was doing when you
come back to it in a year's time (so spelling mistakes don't matter in here).

6. Make sure the serial cable is securely connected to the COM 1 serial port at the
back of your computer and to the Serial connector on your Microbric
motherboard. Also, make sure your Microbric motherboard has batteries and is
switched on.

(Note, if your COM 1 port is already being used, use COM 2 and change the
system setting in your BasicMicro IDE software by going to Tools/System Setup
and changing the Port Setting to COM2.)

7. In the IDE menu, press Program. This compiles the program (changes it from
your high level program to binary so that the computer can understand it) and
then downloads it to the Basic ATOM chip on the Microbric board. If there are
any errors (there shouldn't be any in the above program) the display window at
the bottom will inform you what the errors are.

8. Once the software has finished downloading your program, you should see the
light at pin 0 start to flash. You can disconnect the serial cable and it will keep
going. The program stays in the chip, so you can turn the flashing LED on and
off using the motherboard power switch.

3. Programming the Microcontroller on your Motherboard

3.3 Adding a Slide Switch

1. Now let's attach a slide switch and use it to control the speed of flashes on the
LED.

2. Attach the Slide Switch module to PO on the edge of your Micobric motherboard
next to the LED module (note the 0 and 1 written in gold on the module)

3. Again, let's draw a flow diagram before we write the program. Here is one for the
program we will write.

Turn on LED

v

Keep on for
200
milliseconds

Turn off LED

Keep off for
200
milliseconds

Turn on LED

v

Keep on for
2000
milliseconds

Turn off LED

Keep off for
2000
milliseconds

3. Programming the Microcontroller on your Motherboard

4. Now change the program so that it is the same as below. It is just the same as
above but modified with an “IF/then” statement (to set up two possible paths for
the program to follow):

Main
if in1 =1 then ;tests whether the slide switch is at 0 or 1. If switch is at 1 then
;goes to next line, otherwise goes to Else below
high PO ;make the output at pin 0 high (i.e. 5V)
pause 200 ;hold it (at high) for 200 milliseconds
low PO ;make the output at pin 0 low (i.e. 0V)
pause 200 ;hold it (at low) for 200 milliseconds
goto Main ;go back to Main at the top, this makes
;the progam loop
else
high PO ;make the output at pin 0 high (i.e. 5V)
pause 2000 ;hold it (at high) for 2000 milliseconds
low PO ;make the output at pin 0 low (i.e. 0V)
pause 2000 ;hold it (at low) for 2000 milliseconds
goto Main ;go back to Main at the top, this makes
;the progam loop
endif
End

Some things to note about the program above:
* The module at Pin 1 accepts input from the user and so it is referred to as in1.
this tells the microcontroller to expect input at this pin.
5. Save your program as SlideSwitchprogram.bas
6. Click on “Program” to compile and download the code onto the chip.

7. Remove the serial cable.

8. Switch the slide switch back and forth to see the difference in the LED flashing
speeds.

3. Programming the Microcontroller on your Motherboard

3.4 Adding a buzzer

Now lets look at how the buzzer works. We will use the sound command to control the
buzzer.

1. Connect the buzzer module to P2.

2. Now lets write a program that plays two different “tunes” depending on whether
the slide switch is at 0 or 1. The flow diagram will look like this:

While the switch is
on 1, play tune 1

v

If the switch is
changed to 0

v

While the switch is
0, play tune 2

3. To program the buzzer, we will use the sound command. Let's have a look at
how the sound command works. The sound command takes the general form:

SOUND pin,[duration1\note1,duration2\note2...... durationX\noteX]

pin: this is the pin number that the buzzer is connected to (i.e. P2)

duration: this is a value between 1 and 65535 telling the buzzer how long to stay
on the given note for (measured in milliseconds).

note: is a number between 0 and 32767 that specifies the frequency of the note.

You can put together a series of notes to make a tune by specifying note length
and note frequency.

4. Open a new file in basic ATOM IDE by going to File > New and choosing an
MBasic File. Save this file as Buzzerprogram.bas

3. Programming the Microcontroller on your Motherboard

5. Now, type the following into the text window:

Main
while in1 =1 ;processes instructions below while slide switch (at P1) is at 1
sound P2,[400\450,5010,400\450,400\675,5010,400\675,50\0,4001750,5010,4001750,800\675]
;sound a series of notes (tune 1) at Pin 2
wend ;end for the while loop command

while in1 =0 ;processes instructions below while the slide switch (at P1) is at 0
sound P2,[5011000,50\950,501900,50\850,50\800,501750,501700,50\650,501600,501550,50\500]
;sound a series of notes (tune 2) at Pin 2

wend ;end for the while loop command
goto Main ;go back to main
End ;tells the compiler the code has finished

Some things to note about the program above:

* The While command sets up a condition that while the switch is in a certain
position (i.e the 1 position) a program sequence will follow. This will keep
looping and will test the condition each time before it proceeds. As soon as that
condition changes (i.e. The switch is moved to the 0 position) it will break out of
the loop and continue through the code further down the program.

» Each while command has a corresponding wend command to show where the
while loop ends.

6. Save.

7. Click on “Program” to compile and download the code onto the chip.
8. Remove the serial cable.

9. Switch the slide switch back and forth to play the two different tunes.

10. Now we can modify the above program to include a LED and a buzzer and use
the switch to interchange between the two.

Turn on LED

v

Keep on for
200
milliseconds

Turn off LED

v

Keep off for
200
milliseconds

Play buzzer
tune

3. Programming the Microcontroller on your Motherboard

Main
if in1 =1 then ;tests whether the slide switch (input at P1) is at1 or 0
high PO ;make the output at port 0 high (eg. 5V)
pause 200 ;hold it (at high) for 200 milliseconds
low PO ;make the output at port 0 high (eg. 5V)
pause 200 ;hold it (at low) for 200 milliseconds
goto Main ;go back to Main; this causes the program to loop through the lines abov
else

sound P2,[400\450,5010,400\450,400\675,5010,400\675,50\0,4001750,50\0,4001750,800\675]
;sound a series of notes (tune 1) at Pin 2

goto Main ;go back to Main and loop through
endif ;end of the if statement
End ;tells the compiler the code has finished

11. Save this program as Switchprogram2.bas
12. Click on “Program” to compile and download onto the Microbric motherboard.
13. Unplug the serial plug.

14. When the slide switch is equal to 1, the LED should start to flash. If the slide
switch equals 0, the buzzer should start playing a tune.

3. Programming the Microcontroller on your Motherboard

3.5 The Push Button

This section will give you an example of the use of a push button. Push buttons are
extremely useful for a range of things and so the Button programming code has quite a
number of parameters (parts to the code command that can vary).

1. Attach the Push Button module to P3 on the edge of the
motherboard.

2. Open a New file and name it Pushbutton.bas

3. Now, write the following program in BASIC Atom IDE:

START >«

v

Initialise Light off

Button No
pushed

Yes

Turn light on

.

Stay lit for 1000
milliseconds

3. Programming the Microcontroller on your Motherboard

PushButton varin3 ;Create a variable called Pushbutton that accepts input from pin 3

Main
low PO ;initialise LED off
if PushButton = 1 then LightLED
;if the button is pushed jump to LightLED
goto Main ;loop back to Main
LightLED
high PO ;light the LED at pin 0
pause 1000 ;stay lit for 1000 milliseconds
goto Main ;loop back to Main
End

Some things to note about the program above:

* This time we have defined a variable called PushButton at the very beginning
of the program. It is called a 'variable' because the value can vary according to
input from the user. Note that the value for PushButton will be input at Pin 3.

* We have added another 'line label' besides Main. This allows the Main
program to run a sub-program if a condition is met. The name of the line label
should match what the function does, in this case LightLED. Line labels are
used to break up a long program into smaller 'sub-programs'.

4. Click on “Program” to compile and download the code to the microcontroller on
the motherboard.

5. Remove the serial cable.

6. Press the button at Pin 3 to turn the LED on and off.

3.6 The Motor
1. Attach the Motor module to P4 on the edge of the
motherboard. Connect one of your wheels to the

motor axle.

2. Before writing the program below, let's
have a look at the “serout” and “pulsout”
commands in BASIC. The serout comman
allows you to specify such things as the
direction and speed of the motor. The pulsout
sends a tiny pulse to brake the motor.

They are written in the following general formats:

SEROUT pin, baudmode,[output data]

pin: this is the pin number the motor is connected to.

baudmode: is a variable or constant that specifies serial timing and configuration

in our case we use an i to say that we use an inverted configuration and 2400 as
the baud rate.

3. Programming the Microcontroller on your Motherboard

output data: is information that effects the direction and speed of our motor in
our case the data includes direction (i.e. clockwise or anticlockwise) and speed
which ranges from 0 to 255.

PULSOUT pin, time

pin: this is the pin number the motor is connected to.

time: the duration of the pulse, measured in microseconds.

3. Now open a new file, save it as Motorprogram.bas and then type in the following

program:

Turn on Motor, run at
speed 150 in a ¢
clockwise direction

Run for 5000
milliseconds

Run at 150 speed in
an anticlockwise
direction

Run for 5000
milliseconds

;Initialsie Motor output

high P4 ;Set the output high
pause 50 ;Give the motor module time to get ready
Main

Serout P4,i2400,["C",150] ;Drive motor Clockwise at speed 150

Pause 5000 ;Continue for 5000 milliseconds

pulsout P4,6000 ;Brake Motor by sending a pulse of 6000 microseconds
;to Pin 4

Serout P4,i2400,["A",150] ;Drive motor Anticlockwise at 150 speed

Pause 5000 ;Continue for 5000 milliseconds

pulsout P4,6000 ;Brake Motor by sending a pulse of 6000 microseconds
;to Pin 4

goto Main ;loop to repeat the code
End

4. Click on “Program” to compile and download the code onto the chip. The motor
should turn one way stop briefly, and then go the other way.

5. Remove the serial cable.

6. Turn the motherboard off to stop the motor.

3. Programming the Microcontroller on your Motherboard

3.7 The Bump Sensor

Before using the Bump Sensor module, you will need to assemble the bump sensor itself.

b ‘éf‘ ‘.‘

1. Attach the Bump Sensor module to P5 on the edge of the motherboard

2. Open a new file, save it as BumpSensorprogram.bas and type in the program
below to see how the bump sensor works. Again, note the use of in5 instead of

P5 because we are getting input from a user, and note the use of a separate
function for Back when the input condition is met.

Initialise Lifght off

Start Motor on
clockwise at 150 <

Continue for 1000
milliseconds

Bump sensor
bumped

Yes

Turn light on
Change motor to
Anticlockwise at 150

Continue for 2000
milliseconds

3. Programming the Microcontroller on your Motherboard

;Initialsie Motor output

high P4 ;Set the output high
pause 50 ;Give the motor module time to get ready
Main
low PO ;set the LED at PO to low (eg. 0V)
Serout P4,i2400,["C",150] ;Drive motor Clockwise at 150
Pause 100 ;Continue for 100 milliseconds
if in5 =1 then Back ;If the bumper sensor at P5 is bumped,
;go to Back
goto Main ;Loop back to Main
Back ;Back
pulsout P4,6000 ;brake the motor
high PO ;set the LED at PO to high (eg. 5V)
Serout P4,i2400,["A",150] ;Drive the motor Anticlockwise at 150
Pause 2000 ;Continue for 2000 milliseconds
goto Main ;Loop back to Main
End

3. Click on Program to compile and download onto Microbric motherboard.
4. Unplug the serial plug.
5. The motor should start turning the wheel clockwise. When the bumper is

pushed, the LED should light and the wheel should change direction to
anticlockwise.

3. Programming the Microcontroller on your Motherboard

3.8 The Infrared Receiver
The Infrared Receiver module is the most complex of the kit to program. However, it is
also extremely versatile.

1. Attach the Infrared Receiver module to Pin 6 on the Microbric motherboard.

2. In order to use the remote control with the microcontroller, you will need to follow
a sequence of steps to preset the remote to work with the microcontroller.

a. Put two AAA batteries into the remote control unit.

b. Simultaneously hold down the S button (in the middle of the arrows) and
the B button on the remote (a red light will go on in the top left hand
corner of the remote.)

c. Press the number sequence 0 1 3 on the remote buttons.

d. Press the red power button on the remote.

e. The remote is now configured to work with your microcontroller.

Note that buttons A, C, D, E, F and G are for setting the remote control into
different modes which are not required for this project. Avoid pressing these
buttons as this will inadvertently set your remote into another mode. You can
always return to the 'B' mode by pressing the B button

3. Open a New File and call it IRProgram.bas.

4. Now type in the following program. It is long and complex, so save often. Or
alternatively you can find this program on your CD. Save it (File/Save As...) to a
location on you hard drive before programming it into the microcontroller.

5. In this program you will be using the PULSIN command. This is a command
that tells the microcontroller to wait for a pulse signal. You will note that it
specifies the Pin for the input and then states what to do in the 0 state and the 1
state.

3. Programming the Microcontroller on your Motherboard

Set LED to low

v

Wait for IR signal

Signal
received

Analyse signal Too high/ Too low

Withiny parameters
If = set value for
subroutine, run motor,

buzzer or LED
irdata var word ;Set avariables to hold temporary data
headerlength var word
pulselength var word
IR_DATA_PIN con P6 ;Infrared input is at Pin 6
Main:
low PO
gosub wait ;Call the wait subroutine
if irdata <> 0 then gosub TestIRData ;If irdata is anything other than 0
;run TestIRData
irdata=0 ;clear irdata
goto Main
wait
irdata=0 ;clear irdata
pulsin IR_DATA_PIN,0,WaitEnd,1,headerlength ;wait for a pulse, if one comes
;put the length in 'headerlength’
if headerlength > 2250 then readir ;check if the pulse is greater than
;2250uS. If so, goto 'readir’
WaitEnd
irdata=0 ;clear irdata
return
;Start reading the pulses
readir:
if headerlength > 2750 then WaitEnd ;check if the pulse is greater than
;2750uS, if so goto 'WaitEnd'
pulse1

pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength
;wait for the next pulse and
;store the length in 'pulselength’
if pulselength < 400 then WaitEnd
;if ‘pulselength’ is less than
;400uS then goto 'WaitEnd'
if pulselength < 1000 then pulse2
;if 'pulselength is less than
;1000uS then goto 'pulse2’
irdata = irdata + %1000000000000000 ;Add a high bit 16
pulse2
pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength
if pulselength < 400 then WaitEnd
if pulselength < 1000 then pulse3

3. Programming the Microcontroller on your Motherboard

irdata = irdata + %100000000000000 ;Add a high bit 15
pulse3

pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength

if pulselength < 400 then WaitEnd

if pulselength < 1000 then pulse4

irdata = irdata + %10000000000000 ;Add a high bit 14
pulse4

pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength

if pulselength < 400 then WaitEnd

if pulselength < 1000 then pulse5

irdata = irdata + %1000000000000 ;Add a high bit 13
pulse5

pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength

if pulselength < 400 then WaitEnd

if pulselength < 1000 then pulse6

irdata = irdata + %100000000000 ;Add a high bit 12
pulse6

pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength

if pulselength < 400 then WaitEnd

if pulselength < 1000 then pulse7

irdata = irdata + %10000000000 ;Add a high bit 11
pulse7

pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength

if pulselength < 400 then WaitEnd

if pulselength < 1000 then pulse8

irdata = irdata + 1000000000 ;Add a high bit 10
pulse8

pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength

if pulselength < 400 then WaitEnd

if pulselength < 1000 then pulse9

irdata = irdata + %100000000 ;Add a high bit 9
pulse9

pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength

if pulselength < 400 then WaitEnd

if pulselength < 1000 then pulse10

irdata = irdata + %10000000 ;Add a high bit 8
pulse10

pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength

if pulselength < 400 then WaitEnd

if pulselength < 1000 then pulse11

irdata = irdata + %1000000 ;Add a high bit 7
pulse11

pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength

if pulselength < 400 then WaitEnd

if pulselength < 1000 then pulse12

irdata = irdata + %100000 ;Add a high bit 6
pulse12

pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength

if pulselength < 400 then WaitEnd

if pulselength < 1000 then endreadir

irdata = irdata + %10000 ;Add a high bit 5
endreadir:

return

TestiIRData:
if irdata = %0000100100000000 then motorforward ;if up arrow then motor clockwise
if irdata = %1000100100000000 then motorbackward ;if down arrow then anticlockwise

if irdata = %0100100100000000 then lightLED ;if right arrow then light LED
if irdata = %1100100100000000 then playbuzzer ;if left arrow then play tune
return

motorforward

Serout P4,i2400,["C",255]

3. Programming the Microcontroller on your Motherboard

pulsin IR_DATA_PIN,0,MotorForwardEnd,1,headerlength ;whilst IR data is still

goto motorforward ;coming, keep in this loop
MotorForwardEnd

pulsout P4,6000 ;Stop Motor

return
motorbackward

Serout P4,i2400,["A",255]

pulsin IR_DATA_PIN,0,MotorBackwardEnd,1,headerlength ;whilst IR data is still

goto motorbackward ;coming,keep in this loop
MotorBackwardEnd

pulsout P4,6000 ;Stop Motor

return

lightLED
High PO
Pause 2000
return

playbuzzer
sound P2,[400\450,50\0,400\450,400\675,50\0,400\675,50\0,400\750,50\0,4001750,800\675]
return
end

Some things to note about the program above:

* This program will accept a signal from the remote control, analyse it, and then,
according to the binary 16 bit number received, will either run the motor
forwards, backwards, turn the LED on or play a tune.

* The 'pulse' sequence is necessary to check all the possible incoming
combinations. It is tedious to type in, but gives this program its flexibility to use
multiple buttons to drive it.

* Each of the buttons on your remote control has a specific 16 bit binary number
(referred to as a 16 bit 'word'). You can see four of them represented in the
TestiRData subroutine above. The 16 bit numbers for each of the buttons on
your remote control are written in the table below. You can use them to
program 14 separate functions.

3. Programming the Microcontroller on your Motherboard

Code in Binary

0

1

0

1

0

1

0

1
0
1
1
0
0
1
0
0
1
0
0

1
1

Button

1 button

2 button

3 button

4 putton

5 button

6 button

7 button

8 button

9 button

0 button

& button

» button

A button

Y button

| button

A button

4+ button

X button

= button

+ button

(®) button

4. Building your Bump Robot

4.1 What will it do?

The Bump robot will drive in a straight line until it hits an obstacle.
If the 'bump sensors' meet an obstacle, such as a wall, the
robot will stop, reverse and try a new direction.
You will press the button to start it moving.

4.2 Putting it together

Disconnect the modules from the motherboard but
leave the battery holders in place. Now follow the
step by step lllustrations below to build your bump
robot.

Step 01

4. Building your Bump Robot

4. Building your Bump Robot

Step 06

4. Building your Bump Robot

Step 09

4. Building your Bump Robot

Step 12

4. Building your Bump Robot

4.3 Downloading the program to drive your bump robot
Once your bump robot is built:
1. Open the program, BumpRobot.bas in BasicMicro IDE from your CD-ROM
2. Save the program (File/Save As...) to a location on you hard drive.
3. Connect the serial connector to the motherboard's serial port.
4. Click on Program to download the program onto your Bump Robot
microcontroller on the motherboard.
. Disconnect the serial connector.
. Press the button on the Button Module to start your Bump Robot.

o O1

4.4 The Code

We have included the code here so that you can investigate the program used:

;**Variables™

temp var word
PushButton var in6
LeftBumper var in15

RightBumper var in13

;**Constants™*

LeftLED con PO
RightLED con P12
RightMotor con P11
LeftMotor con P1

;Initialise Motor outputs
high RightMotor
high LeftMotor

pause 50
StopRobot:
gosub StopWheels ;Call the subroutine StopWheels
low LeftLED ;Turn LeftLED off
low RightLED ;Turn RightLED off
pause 250 ;Pause - Do nothing for 250mS
if PushButton = 1 then StopRobot
Loop:
if PushButton = 1 then Main ;If Push Button is pressed goto the
;main program
pause 10 ;Pause - Do nothing for 10mS
goto Loop ;Loop around to Loop

main:
toggle LeftLED
toggle RightLED
gosub Forward
pause 200

;Swap the state of Left LED
;Swap the state of Right LED
;Call the subroutine "Forward"
;Pause - Do nothing for 200mS

if LeftBumper = 1 then BackwardSpinRight

;If the right bumper sensor is bumped
;BackwardSpinRight

if RightBumper = 1 then BackwardSpinLeft

if PushButton = 1 then StopRobot

goto main

;If the right bumper sensor is bumped
;BackwardSpinLeft

;If Push Button is pressed goto StopRobot
;Loop around to Main

4. Building your Bump Robot

BackwardSpinRight:
gosub StopWheels
gosub Backward
gosub SpinRight
goto main

BackwardSpinLeft:
gosub StopWheels
gosub Backward
gosub SpinLeft
goto main

Forward:
Serout LeftMotor,i2400,["A",150]
Serout RightMotor,i2400,["C",150]
Return

Backward:

pause 50

Serout LeftMotor,i2400,["C",150]

Serout RightMotor,i2400,["A",150]
fortemp =1to 25
pause 7
if PushButton = 1 then StopRobot
next

gosub StopWheels

pause 50

Return

SpinRight:

Serout LeftMotor,i2400,["A",150]

Serout RightMotor,i2400,["A",150]
for temp =1 to 25
pause 15
if PushButton = 1 then StopRobot
next

gosub StopWheels

pause 50

return

SpinLeft:
Serout LeftMotor,i2400,["C",150]
Serout RightMotor,i2400,["C",150]
for temp =1 to 25
pause 15

if PushButton = 1 then StopRobot
next

gosub StopWheels

pause 50

return

StopWheels:
pulsout LeftMotor,6000
pulsout RightMotor,6000
Return

end

;Call the subroutine StopWheels
;Call the subroutine Backward
;Call the subroutine SpinRight
;Loop around to Main

;Call the subroutine StopWheels
;Call the subroutine Backward
;Call the subroutine SpinLeft
;Loop around to Main

;:Drive motor Anticlockwise at 150

;Drive motor Clockwise at 150

;Drive motor Clockwise at 150

;Drive motor Anticlockwise at 150

;If Push Button is pressed goto StopRobot

;Drive motor Anticlockwise at 150
;:Drive motor Anticlockwise at 150

;If Push Button is pressed goto StopRobot

;Drive motor Clockwise at 150
:Drive motor Clockwise at 150

;If Push Button is pressed goto StopRobot

;Brake Left Motor
;Brake Right Motor

5. Building your Infrared Viper Robot

5.1 What will it do?

Your infrared Viper can be driven using your remote control. Having built the “Bump
Robot”, now challenge yourself by building variations of the Viper!

5.2 Preparing the Remote Control

In order for the Microbric microcontroller to receive signals from the remote control unit

that has come with your kit, you will need to work through a preset routine.
1. Put two AAA batteries into the remote control.

2. Simultaneously press the S button (in the middle of the arrows) and the B button

(at the top of the remote) until the little red light goes on in the top left hand
corner.

3. Now type in the numbers 0 1 3

4. Press the red power button

5. The remote is now ready to be used with your robot.

Note that buttons A, C, D, E, F and G are for setting the remote control into different
modes which are not required for this project. Avoid pressing these buttons as this will

inadvertently set your remote into another mode. You can always return to the 'B' mode by

pressing the B button.

5.3 Downloading the program
Once your Infrared Viper robot is built:
1. Open the program IRControlledRobot.bas in Basic Micro IDE from your
CD-ROM.
2. Save the program (File/Save As...) to a location on you hard drive.
3. Connect the serial connector to the motherboard's serial port

4. Click on Program to download the program onto your Viper's microcontroller on

the motherboard.
5. Disconnect the serial connector.

Press the direction arrows on your remote control to drive your Viper.

5. Building your Infrared Viper Robot

pulse5:
pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength ;As above
if pulselength < 400 then WaitEnd
if pulselength < 1000 then pulse6 ;If less than 1000uS go to ‘pulse6’
irdata = irdata + %100000000000 ;Add a high bit 12
pulse6:
pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength ;As above
if pulselength < 400 then WaitEnd
if pulselength < 1000 then pulse7 ;If less than 1000uS go to 'pulse?’
irdata = irdata + %10000000000 ;Add a high bit 11
pulse7:
pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength ;As above
if pulselength < 400 then WaitEnd
if pulselength < 1000 then pulse8 ;If less than 1000uS go to 'pulse8’
irdata = irdata + %1000000000 ;Add a high bit 10
pulse8:
pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength ;As above
if pulselength < 400 then WaitEnd
if pulselength < 1000 then pulse9 ;If less than 1000uS go to 'pulse9’
irdata = irdata + %100000000 ;Add a high bit 9
pulse9:
pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength ;As above
if pulselength < 400 then WaitEnd
if pulselength < 1000 then pulse10 ;If less than1000uS go to ‘pulse10’
irdata = irdata + %10000000 ;Add a high bit 8
pulse10:
pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength ;As above
if pulselength < 400 then WaitEnd
if pulselength < 1000 then pulse11 ;If less than 1000uS go to 'pulse11’
irdata = irdata + %1000000 ;Add a high bit 7
pulse11:
pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength ;As above
if pulselength < 400 then WaitEnd
if pulselength < 1000 then pulse12 ;If less than1000uS go to 'pulse12’
irdata = irdata + %100000 ;Add a high bit 6
pulse12:
pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength ;As above
if pulselength < 400 then WaitEnd
if pulselength < 1000 then endreadir ;If less than1000uS end
irdata = irdata + %10000 ;Add a high bit 5
endreadir:
return
TestIRData:
High LED_Pin ;Set LED_Pin high
if irdata = %0000100100000000 then forward
if irdata = %1000100100000000 then backward
if irdata = %0100100100000000 then twistright
if irdata = %1100100100000000 then twistleft
if irdata = %0010100100000000 then still
return
forward:
Serout LeftMotor,i2400,["A",255]
Serout RightMotor,i2400,["C",255]
pulsin IR_DATA_PIN,0,ForwardEnd,1,headerlength ;whilst IR data is still coming in
;keep in this loop
goto Forward
ForwardEnd:
gosub Still
return
backward:
Serout LeftMotor,i2400,["C",255]
Serout RightMotor,i2400,["A",255]
pulsin IR_DATA_PIN,0,BackwardEnd,1,headerlength ;As above
goto Backward
BackwardEnd:
gosub Still

return

5. Building your Infrared Viper Robot

5.4 The Code

;**VARIABLES**
temp var word
irdata var word
headerlength var word
pulselength var word
leftspeed var word
rightspeed var word
;**CONSTANTS**
IR_DATA_PIN con P14
LeftMotor con P13
RightMotor con P15
LED_Pin con P6
;**Initialise Motor Outputs**

High LeftMotor

High RightMotor

pause 500
Main:

low LED_Pin

gosub wait

if irdata <> 0 then gosub TestIRData

irdata=0

goto Main
wait:

irdata=0

pulsin IR_DATA_PIN,0,WaitEnd,1,headerlength

if headerlength > 2250 then readir
WaitEnd:

irdata=0

return

;Call the wait subroutine

;clear irdata

;wait for a pulse, if one comes
;put the length in 'headerlength’
;check if the pulse is greater
;than 2250uS if so goto ‘readir’

;clear irdata

;Start reading the pulses
readir:
if headerlength > 2750 then WaitEnd

pulse1:
pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength

if pulselength < 400 then WaitEnd
if pulselength < 1000 then pulse2

irdata = irdata + %1000000000000000
pulse2:
pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength
if pulselength < 400 then WaitEnd
if pulselength < 1000 then pulse3
irdata = irdata + %100000000000000
pulse3:
pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength
if pulselength < 400 then WaitEnd
if pulselength < 1000 then pulse4
irdata = irdata + %10000000000000
pulse4:
pulsin IR_DATA_PIN,0,WaitEnd,1,pulselength
if pulselength < 400 then WaitEnd
if pulselength < 1000 then pulse5
irdata = irdata + %1000000000000

;check if the pulse is less than
;2750uS, if so goto 'WaitEnd'

;wait for the next pulse and
;store the length in 'pulselength’
;if 'pulselength’ is less than
;400uS then goto 'WaitEnd'

;if 'pulselength is less than
;1000uS then goto 'pulse2’

;Add a high bit 16

;As above

;If less than 1000uS go to 'pulse3’
;Add a high bit 15

;As above

;If less than 1000uS go to 'pulse4’
;Add a high bit 14

;As above

;If less than 1000uS go to 'pulse5’
;Add a high bit 13

5. Building your Infrared Viper Robot

twistright:
Serout LeftMotor,i2400,["A",255]
Serout RightMotor,i2400,["A",255]
pulsin IR_DATA_PIN,0,TwistRightEnd,1,headerlength ;As above
goto TwistRight
TwistRightEnd:
gosub Still
return

twistleft:
Serout LeftMotor,i2400,["C",255]
Serout RightMotor,i2400,["C",255]
pulsin IR_DATA_PIN,0,TwistLeftEnd,1,headerlength ;As above
goto TwistLeft
TwistLeftEnd:
gosub Still
return

still:
pulsout LeftMotor,6000 ;Brake Left Motor
pulsout RightMotor,6000 ;Brake Right Motor
pause 50
return

end

6. What now?

6.1 More Programming Information
There is so much more to the BASIC ATOM than what has been cover here. See the full
ATOM programming manual under the 'Help' menu in the BASIC MICRO IDE.

6.2 Cleaning up the edges

You may find that the pieces that have been pushed out of the sheets have rough edges.
Find a small file (a metal nail file will do) and gently file the edges smooth to perfect your
robots..

6.3 Variations

You now know enough about programming to make your own variations of the models
provided. Experiment with a range of robot designs and write or adapt the programs to
drive your new robots..

6.3 Variations

Want more? Go online to www.microbric.com to find out the latest news in Microbric
Robotics! Join an online forum. Find out the newest models and designs. Buy additional
pieces or replace missing ones. Check out the FAQs to troubleshoot problems, or
contact the Microbric team.

